In electronics, conductance is a measure of the current produced through a circuit element for a given applied voltage. Usually denoted by the letter G, conductance is the reciprocal of resistance, R. The unit of conductance is the siemens (S). The conductance of a conductor depends on many factors, including its shape, dimensions, and the material's conductivity—usually denoted by the Greek letter σ.
Conductance from Resistance
Suppose a particular circuit element has a resistance of 1.25 × 103 ohms. Because conductance is the reciprocal of resistance, we can write:
Therefore:
Conductance when Current and Voltage Are Known
Consider this example: A voltage (V) of 5 volts generates a current (I) of 0.30 amps in a particular length of wire. Ohm's law tells us that resistance (R) can be easily determined. According to the law:
So:
In this case, it's 0.30 amps ÷ 5 volts = 0.06 Siemens.
Conductance from Conductivity
Suppose you have a wire with a round cross-section that has a radius r and length L. If you know the conductivity (σ) of the wire material, you can find the conductance (G) of the wire. The relationship between them is:
and since cross-sectional area is πr2, this becomes:
Example:
Find the conductance of a round piece of iron with a cross-sectional radius of 0.001 meters and length of 0.1 meters.
Iron has a conductivity of 1.03 × 107 siemens/m, and the cross-sectional area of the wire is 3.14 X 10-6 m. The conductance of the wire is then 324 siemens.
References
Tips
- Conductance ohm, and thermal coefficient alpha can be looked up in tables. When the conductivity is not given, it is equal to the inverse of resistivity rho: ohm = 1 / rho.
Warnings
- Conductivity is a property of a material that describes how easily current flows through it in general. Conductance is a property of a particular piece of that material.
About the Author
Ariel Balter started out writing, editing and typesetting, changed gears for a stint in the building trades, then returned to school and earned a PhD in physics. Since that time, Balter has been a professional scientist and teacher. He has a vast area of expertise including cooking, organic gardening, green living, green building trades and many areas of science and technology.