How to Calculate the Wronskian

How to Calculate the Wronskian
••• benjaminec/iStock/GettyImages

In mathematics, the need sometimes arises to prove whether functions are dependent or independent of each other in a linear sense. If you have two functions that are linear dependent, graphing the equations of those functions result in points that overlap. Functions with independent equations do not overlap when graphed. One method of determining whether functions are dependent or independent is to calculate the Wronskian for the functions.

What Is a Wronskian?

The Wronskian of two or more functions is what is known as a determinant, which is a special function used to compare mathematical objects and prove certain facts about them. In the case of the Wronskian, the determinant is used to prove dependence or independence among two or more linear functions.

The Wronskian Matrix

To calculate the Wronskian for linear functions, the functions need to be solved for the same value within a matrix that contains both the functions and their derivatives. An example of this is

W(f,g)(t)=\begin{vmatrix} f(t) & g(t) \\ f'(t) & g'(t) \end{vmatrix}

which provides the Wronskian for two functions (​f​ and ​g​) that are solved for a single value that is greater than zero (​t​); you can see the two functions ​f​(​t​) and ​g​(​t​) in the top row of the matrix, and the derivatives ​f​'(​t​) and ​g​'(​t​) in the bottom row. Note that the Wronskian can be used for larger sets as well. If for example, you test three functions with a Wronskian, then you might populate a matrix with the functions and derivatives of ​f​(​t​), ​g​(​t​) and ​h​(​t​).

Solving the Wronskian

Once you have the functions arranged in a matrix, cross-multiply each function against the derivative of the other function and subtract the first value from the second. For the example above, this gives you

W(f,g)(t) = f(t)g'(t) - g(t)f'(t)

If the final answer equals zero, this shows that the two functions are dependent. If the answer is something other than zero, the functions are independent.

Wronskian Example

To give you a better idea of how this works, assume that

f(t) = x + 3 \text{ and } g(t) = x - 2

Using a value of ​t​ = 1, you can solve the functions as

f(1) = 4 \text{ and } g(1) = -1

As these are basic linear functions with a slope of 1, the derivatives of both ​f​(​t​) and ​g​(​t​) equal 1. Cross-multiplying your values gives to

W(f,g)(1) = (4 + 1) - (-1 + 1)

which provides a final result of 5. Though the linear functions both have the same slope, they are independent because their points to not overlap. If ​f​(​t​) had produced a result of −1 instead of 4, the Wronskian would have given a result of zero instead to indicate dependence.

Related Articles

How to Differentiate a Function
Ways to Tell if Something Is a Function
How to Find the Inverse of a Function
How to Do Function Tables in 6th Grade Math
How to Find the Zeros of a Function
How to Explain Input & Output Tables in Algebra
How to Solve Compound Inequalities
Facts About Functions for Algebra 1
How to Calculate the Cumulative Probabilities in SPSS
How to Determine If Matrices Are Singular or Nonsingular
How to Find Vertical & Horizontal Asymptotes
How to Graph a Function
How to Find Y Value for the Slope of a Line
How to Find a Tangent Line to a Curve
How to Do Linear Equations in Math
How to Plot a Lognormal Curve
How to Work Out a Gradient of a Curve
Differences Between Absolute Value & Linear Equations