Many of the most recognizable parts of nature function by maintaining some sort of balance. The carbonate buffering system is one of the most important buffering systems in nature, which helps maintain that balance.
TL;DR (Too Long; Didn't Read)
Like any buffering system, a bicarbonate buffer resists change in pH, so it helps stabilize the pH of solutions like blood and ocean water. Ocean acidification and the effects of exercise on the body are both examples of how bicarbonate buffering works in practice.
Carbonic Acid
When carbon dioxide (CO2) gas dissolves in water, it can react with that water to form carbonic acid. Carbonic acid can then give up a hydrogen ion to become bicarbonate, which can give up another hydrogen ion to become carbonate. All these reactions are reversible. This means they work both forward and in reverse. Carbonate, for example, can pick up a hydrogen ion to become bicarbonate.
Carbonate Equilibrium
The series of reactions that leads from dissolved carbon dioxide to carbonate quickly reaches a dynamic equilibrium, a state in which the forward and reverse processes of this reaction happen at equal rates. Adding acid will increase the rate of the reverse reaction and of carbon dioxide formation, causing more carbon dioxide to diffuse out of the solution. Adding base, on the other hand, will increase the rate of the forward reaction, causing more bicarbonate and carbonate to form. Any pressure on this system causes a compensating shift in a direction that restores equilibrium. The buffering system continues to work as long as its concentration is large in comparison to the amount of acid or base added to the solution.
Humans and Carbonate Buffering
In humans and other animals, the carbonate buffering system helps maintain a constant pH in the bloodstream. The pH of blood depends on the ratio of carbon dioxide to bicarbonate. The concentrations of both components are very large compared to the concentrations of acid added to the blood during normal activities or moderate exercise. During strenuous exercise, for example, rapid breathing helps to compensate for the increase in carbon dioxide in your blood. Other mechanisms that assist in this function include the hemoglobin molecule in your red blood cells, which also helps to buffer blood pH.
Carbonate Buffering in the Ocean
In the ocean, dissolved carbon dioxide from the atmosphere is in equilibrium with seawater concentrations of carbonic acid and bicarbonate. However, increased carbon dioxide emissions from human activity have raised atmospheric carbon dioxide levels, causing an increase in dissolved carbon dioxide. As the concentration of dissolved carbon dioxide increases, the rate of the forward reaction of the buffering system increases until the system reaches a new equilibrium. This means that an increase in dissolved carbon dioxide causes a slight decrease in pH. The ocean's buffering capacity -- its ability to soak up acid or base -- is very large, but gradual changes of this kind can have serious ramifications for many kinds of life in the ocean. Animals that make their shells from calcium carbonate, for example, might find their shell-making capabilities reduced by significant changes in the acid-base equilibrium of ocean water.
References
About the Author
Based in San Diego, John Brennan has been writing about science and the environment since 2006. His articles have appeared in "Plenty," "San Diego Reader," "Santa Barbara Independent" and "East Bay Monthly." Brennan holds a Bachelor of Science in biology from the University of California, San Diego.