How to Convert Grams to Curies

Radioactive decay may be measured in curies.
••• Stockbyte/Stockbyte/Getty Images

Radioactive elements undergo decay, and the speed at which the decay occurs used to be measured in curies. The International Council of Scientific Unions on Standards, Units and Constants of Radioactivity defined the curie as the "quantity of any radioactive substance in which 3.7 × 10^10 disintegrations occur each second." Decay rates vary between the different radioactive elements, so the conversion of grams to curies, abbreviated to Ci, is possible only when the source material is known.

    Establish the atomic weight of the element by checking the periodic table. For example, the atomic weight of Cobalt-60 is 59.92 and Uranium-238 has the atomic weight 238.

    Convert the mass into moles, using the formula moles = mass of the element / atomic mass of the element, and then convert moles to atoms by multiplying the mole value by Avogadro's number, 6.02 x 10^23. For example, to establish the number of atoms in 1 gram of Cobalt-60, calculate (1 / 59.92) x (6.02 x 10^23). This resolves to 1.01 x 10^22 atoms.

    Substitute the activity of the element, for example 1.10 x 10^3 Ci for Cobalt-60, into the formula: r = activity rate x (3.700 x 10^10 atoms/s/Ci). The result is "r," the number of atoms decaying per second. For example, 1.10 x 10^3 x 3.700 x 10^10 = 4.04 x 10^13 atoms decaying per second, so r = 4.04 x 10^13.

    Use the first-order rate equation, r = k[number of atoms]1, to determine the value for k. For example, using the values for "r" and the number of atoms previously determined for Cobalt-60, the equation becomes: 4.04 x 10^13 atoms decaying per second = k[1.01 x 10^22 atoms]. This resolves to k = 4.1 x 10^-9 s^-1

    Determine the decay activity, in atoms / second, for the element. To do this, substitute the number of atoms in the sample into the equation: (4.1 x 10^-9 s^-1) x (number of atoms in the sample). For example, with 1.01 x 10^22 atoms the equation becomes : (4.1 x 10^-9 s^-1) x (1.01 x 10^22). This resolves to 4.141 x 10^13 atoms / second.

    Calculate the value in curies by dividing the decay rate per second by 3.7 x 10^10, the decay rate equal to 1 curie. For example, 1 gram of Cobalt-60 is equivalent to 1,119 curies because 4.141 x 10^13/ 3.7 x 10^10 = 1,119 Ci.

    Tips

    • Use a scientific calculator and perform all the calculations using scientific notation. This eliminates potential errors generated by incorrect numbers of zeros in very large numbers.

    Warnings

    • Step 4 involves calculus and will not be possible without advanced mathematical knowledge.

Related Articles

How to Calculate the Ionization Energy of Atoms
How to Calculate Isotopes
How to Calculate the Number of Atoms in a Sample
How to Find the Number of Moles Needed to React
How to Convert MG to MEQ
How to Calculate the Rate of Decay
How to Find an Oxidation Number
How to Convert Micrograms to Micromoles
How to Count Particles in Chemical Formulas
How to Convert Kilojoules to Kilocalories
How to Calculate the Degree of Polymerization
How to Find the Percent of Concentration of Copper...
How to Calculate Atomic Mass
What Are Representative Particles of Elements?
How to Find the Moles of HNO3
What Is Molarity & How Is It Calculated?
How to Calculate a Milliequivalent
How to Calculate Particle Concentration
How to Calculate the Number of Atoms Given the Grams...