Discovery of the Mitochondria

Oil immersion microscope lenses gave better images of mitochondria.
••• Hemera Technologies/ Images

Commonly termed the powerhouse of the cell, mitochondria are vital for energy production that comes from the breakdown of carbohydrates and fatty acids. Although structures that may have been mitochondria might have been noticed from the 1850s, it wasn't until the oil immersion lens became available for microscopes in 1870 and new tissue-staining techniques developed toward the end of the 1800s that scientists could see mitochondria within cells.

Initial Discovery of Mitochondria

Around 1890, a German scientist named Richard Altmann developed a better way of preserving, or fixing, tissues meant for examining under the microscope. He also used a new acid-fuchsin tissue stain to prepare the slides. He could then see filaments that looked like strings of granules within nearly all cells he examined. He called these structures "bioblasts." Altmann proposed that the granules were basic living units within cells that were responsible for metabolic processes.

The Name Mitochondrion

In 1898, Carl Benda, another German scientist, published results from using yet a different stain, crystal violet, to study cells under the microscope. He investigated Richard Altmann's bioblasts and saw structures that sometimes looked like threads and at other times resembled granules. He coined the term "mitochondrion" for them, from the Greek words "mitos," meaning "thread" and "chondros," meaning "granule," with the plural being "mitochondria." In 1900, Leonor Michaelis published his findings that the dye Janus green stained mitochondria in living cells, proving that they were real and not artifacts produced by preparation techniques.

Origin of Mitochondria

Right at the beginning, Altmann suggested that bioblasts were symbionts. He thought them capable of basic metabolic processes and considered them equivalent to independently existing microorganisms. This theory was dismissed and forgotten until the work of American scientist Lynn Margulis in the 1960s. She proposed that mitochondria originated from independently living bacteria that were engulfed by another cell, a process called endocytosis. These bacteria adapted to living as endosymbionts within the host cells. It's likely that the proposed symbiotic relationship developed over a billion years ago.

Mitochondrial Roles and Characteristics

Just since the beginning of the 1900s, the understanding of mitochondria has grown enormously thanks to biochemical and genetics investigations and imaging by electron microscopy. Mitochondria are cell organelles with a double membrane that have their own DNA, called mDNA or mtDNA. Each cell contains hundreds to thousands of mitochondria. They synthesize adenosine triphosphate, the body's main energy-carrying molecule important in cellular respiration, on the inner membrane. Mitochondria also function in regulating cell death, or apoptosis, and in the production of cholesterol and heme, the component of hemoglobin that binds oxygen in blood cells.

Related Articles

Instruments Used in Biology
What Is an Organelle in a Cell?
Do All Cells Have Mitochondria?
How Do Mitochondria & Chloroplasts Resemble Bacteria?
The Location of Ribosomes in a Cell
Evolutionary Relationships Between Prokaryotes & Eukaryotes
Five Types of Atomic Models
What Are the First Eukaryotic Fossils?
Differences Between Protista & Monera
Major Types of Bacteria
What Are the Advantages of the Transmission Electron...
What Evidence Proves Prokaryotes Existed Before Eukaryotes?
Eukaryotic Cell Characteristics
Which Organelles Would Be Found Within a Cell That...
The Importance of Compound Microscopes
Why Are Cells Important for Living Organisms?
What Are the Two Prokaryotic Kingdoms?
Instruments Used in Biology
What Are the Benefits of Ribosomes?
How Do Microscopes Improve Our Lives Today?

Dont Go!

We Have More Great Sciencing Articles!